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Abstract

List-colouring is an influential and classic topic in graph theory. We initiate the study of
a natural strengthening of this problem, where instead of one list-colouring, we seek many in
parallel. Given the assignment of a list L(v) of k colours to each vertex v ∈ V (G), we study the
existence of k pairwise-disjoint proper colourings of G using colours from these lists. We refer
to this as a list-packing and we define the list-packing number χ?

` (G) as the smallest k for which
every list-assignment of G admits a list-packing. We prove several results that (asymptotically)
match the best-known bounds for the list chromatic number, among which: χ?

` (G) ≤ n with
equality if and only if G is the complete graph on n vertices, χ?

` (G) ≤ (1 + o(1)) log2(n) if G is
bipartite on n vertices, and χ?

` (G) ≤ (1+o(1))∆/ log(∆) if G is bipartite with maximum degree
∆. We conjecture that the last statement also holds for triangle-free graphs. Our main open
question is whether χ?

` (G) can be bounded by a constant times the list chromatic number.

1 Introduction

We are interested in a strengthening of list-colouring [8], where we seek to find not just one list-
colouring, but many disjoint list-colourings that moreover induce a partition of each list. We ask
how large the lists need to be to guarantee such a partition. It was Alon, Fellows and Hare [4]
who first hinted at this direction, right at the end of their paper, but ours [7] is the first work to
embrace this suggestion.

Given a graph G, a list-assignment L of G is a mapping L : V (G) → N that assigns a list
L(v) of available colours to each vertex v ∈ V (G). Given a positive integer k, a k-list-assignment
is a list-assignment for which each list has cardinality k. A proper L-colouring is a colouring
c : V (G) → N such that every v ∈ V (G) receives a colour c(v) from its list L(v), and adja-
cent vertices receive distinct colours. The list chromatic number χ`(G) is the least k such that
G admits a proper L-colouring for every k-list-assignment L of G. By definition, χ(G) ≤ χ`(G)
for every graph G. On the other hand, χ`(G) cannot be upper bounded by a function of χ(G) alone.

We formulate the question above concretely within the framework of list-colouring. Given a
list-assignment L of G, an L-packing of G of size k is a collection of k mutually disjoint L-colourings
c1, . . . , ck of G, that is, ci(v) 6= cj(v) for any i 6= j and any v ∈ V (G). We say that an L-packing is
proper if each of the disjoint L-colourings is proper. We define the list (chromatic) packing number
χ?
` (G) of G as the least k such that G admits a proper L-packing of size k for any k-list-assignment
L of G. Note that χ?

` (G) is necessarily at least χ`(G).

Once the lists of a graph are of size much larger than χ`(G), it is clear that there also must exist
many disjoint list-colourings: just iteratively extract list-colourings until the lists have size less than
χ`(G). However, this greedy procedure leaves small remainder lists from which one may not be



able to extract any further list-colouring, thus preventing the formation of a partition. Therefore
the reader may not find it obvious that χ?

` is actually well-defined (i.e. finite) for every graph. It
turns out that it is. This follows for instance from our following result, which is immediate in the
context of list-colouring, but much less so for list-packing.

Theorem 1. χ?
` (G) ≤ n for any graph G on n vertices. Equality holds if and only if G is Kn, the

complete graph on n vertices.

A natural potential strengthening of Theorem 1 remains wide open: in our full paper [7], we
also study correspondence colouring, which in turn is a well-studied generalization of list-colouring
that allows for forbidding custom pairs of colours along each pair of adjacent vertices. Seeking a
partition into correspondence colourings analogously leads to the definition of the correspondence
packing number χ?

c(G) of a graph G. One always has χ?
` (G) ≤ χ?

c(G). An elegant conjecture going
back to constructions of Catlin (see [11]), originally formulated in terms of disjoint independent
transversals in sparse n-partite graphs, can be reformulated as: χ?

c(G) ≤ 2dn2 e for every n-vertex
graph G. It is sufficient to prove this for Kn. However, the best known upper bound is 1.78n, for
n large enough, due to Yuster [11].

Usually, one considers the easy bound χ`(G) ≤ n as a corollary of a more refined statement
about greedy colouring. A graph is d-degenerate if there is an ordering of its vertices such that
each vertex has at most d neighbours preceding it in the order. By colouring the vertices greedily
along this order, it is easy to see that χ`(G) ≤ d + 1 for every d-degenerate graph G. Leveraging
Hall’s theorem and iterative constructions, we demonstrate that this bound only partially survives
in the packing context.

Theorem 2. For any d-degenerate graph G,

χ?
` (G) ≤ χ?

c(G) ≤ 2d.

Conversely, for every integer d ≥ 2, there exists a d-degenerate graph G with χ?
c(G) = 2d and

χ?
` (G) ≥ d+ 2.

While this completely settles the behaviour of χ?
c(G) with respect to degeneracy, we still do

not know the right answer for χ?
` (G). Turning to the maximum degree ∆(G) of G, in a follow-up

paper (work in progress), we explore the possibility that χ?
c(G) ≤ 2

⌈
∆(G)+1

2

⌉
and we prove this for

∆(G) ≤ 4. In a slightly different direction (in the current paper) we obtain:

Theorem 3. χ?
` (G) ≤ 1 + ∆(G) + χ`(G) and χ?

c(G) ≤ 1 + ∆(G) + χc(G), for any graph G.

Another important way to bound list chromatic number is to estimate it in terms of the chro-
matic number. For bipartite graphs G on n vertices, Erdős, Rubin and Taylor [8] already showed
that χ`(G) ≤ log2(n) + 1, and this is optimal up to a factor 1 + o(1) as n→∞. More generally, by
a result of Alon [1], χ`(G) is within a factor log n of χ(G) for every graph G on n vertices. Through
an analysis of random binary matrices, we show that asymptotically these bounds also hold in the
list-packing setting.

Theorem 4. For graphs G on n vertices we have, as n→∞,

χ?
` (G) ≤


(1 + o(1)) log2 n if G bipartite,

(1 + o(1))χf (G) log n if χf (G) uniformly bounded as n→∞,

(5 + o(1))χf (G) log n in general.



Here we present a further strengthening in terms of the fractional chromatic number χf (G)
of G, which is the linear program relaxation of the chromatic number and as such a lower bound
on χ(G). In the case that χf (G) is bounded, Theorem 4 is asymptotically sharp for the complete
multipartite graphs (see [8]). For each graph G, one can write χf (G) = a

b for some integers a, b. Our
proof proceeds by considering many independent random [a]-colourings of the union of the lists,
which we use (via some optimal fractional colouring of G) to associate a random binary matrix
with each vertex, in such a way that there is a list-packing if none of these matrices has permanent
0. We then find good estimates for the probability that a random binary matrix has permanent 0:

Theorem 5. Let 0 ≤ p < 1 be a real number. Let A be a random k × k-matrix with negatively
correlated Bernoulli(1− p) distributed entries. Then

Permanent(A) = 0 with probability 2kpk(1 + o(1)) as k →∞.

Returning to list-colouring bipartite graphs, Alon and Krivelevich [5] conjectured something
more refined in terms of maximum degree, in particular, that for some C > 0 we have χ`(G) ≤
C log ∆(G) for any bipartite G. Since its formulation there has been surprisingly little progress on
this essential problem. Already then, it was known that for some C > 0 χ`(G) ≤ C∆/ log ∆(G) for
any bipartite G, a statement which is a corollary of the seminal result of Johansson for triangle-free
graphs [9]. Recent related efforts have only affected the asymptotic leading constant C, bringing
it down to 1; see [10, 3]. Our work matches these recent efforts, but for a much stronger structural
parameter.

Theorem 6. χ?
` (G) ≤ (1 + o(1))∆/ log ∆ for any bipartite graph G with ∆(G) ≤ ∆, as ∆→∞.

Theorem 7. χ?
c(G) ≤ (1 + o(1))∆/ log ∆ for any bipartite graph G with ∆(G) ≤ ∆, as ∆→∞.

In stark contrast to Theorem 6, our Theorem 7 is best possible up to a factor two, due to
an elegant probabilistic lower bound for χc(G) by Bernshteyn [6]. We conjecture that Theorem 7
also holds for triangle-free graphs, thus generalizing Johanssons result. However, despite recent
relatively short proofs of the latter, none of them seem to be easily adaptable to list-packing. For
instance, these proofs often rely on a ‘finishing blow’, where a random partial list-colouring can be
completed greedily by drawing colours from suitably structured smaller lists. In the list-packing
setting this does not seem enough, as we require access to the full lists to construct a partition.
Already a bound strictly smaller than ∆ would be welcome progress.

Even for bipartite graphs, our proof of Theorem 7 is rather involved. We draw on the ‘coupon
collector intuition’, which we know can be combined with the Lovász local lemma to obtain the
analogous bound on χc(G) (see [3]). Unfortunately, this approach does not immediately work
for Theorem 7 as the requisite negative correlation property becomes false in the packing setting;
however, we managed to circumvent this obstacle via a suitable result on transversals in a large
sum of independent uniformly random permutation matrices, using significant further probability
estimates.

2 Concluding remarks

We have set the stage for a natural fusion between two classic notions in (extremal) graph theory:
packing and colouring. Our programme would see significant progress if one could prove the
following list-packing conjecture:



Conjecture 1. There exists C > 0 such that χ?
` (G) ≤ C · χ`(G) for any graph G.

It could even be the case that, for each ε > 0 there is some χ0 such that χ?
` (G) ≤ (1 + ε) · χ`(G)

for all G with χ`(G) ≥ χ0. A resolution of Conjecture 1, either affirmatively or negatively, would
be very interesting. Together with the result proved by Alon [2] that for some constant C > 0,
χ`(G) ≥ C log d for all graphs G that are d-degenerate but not (d − 1)-degenerate, note that
Theorem 2 implies that χ?

` (G) is bounded by an exponential function of χ`(G), which serves as
modest support for Conjecture 1. Regardless of its status in general, Conjecture 1 may be specialised
to various fundamental graph classes to push for further progress, e.g.:

• Planar graphs. We do not yet have any constructions to rule out the possibility that χ?
` (G) ≤ 5

for all planar G. Theorem 2 implies that it is at most 10. What is the optimal value?

• Line graphs. Based on the List Colouring Conjecture, we surmise for every ε > 0 that
χ?
` (G) ≤ (1 + ε)ω for every line graph G with clique number ω ≥ ω0. Due to its connection to

Latin squares, here even the case where G is the line graph of the complete bipartite graph
Kω,ω is enticing to narrow in on.

• Random graphs. Does it hold that χ?
` (Gn,1/2) ≤ (1 + o(1))n/(2 log2 n) a.a.s.?

Finally, we reiterate the open problems of determining the right bound for χ?
` (G) for d-degenerate

graphs G (see Theorem 2), and extending Theorem 7 from bipartite to triangle-free graphs.
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