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Abstract

List-colouring is an influential and classic topic in graph theory. We initiate the study of
a natural strengthening of this problem, where instead of one list-colouring, we seek many in
parallel. Given the assignment of a list L(v) of k colours to each vertex v € V(G), we study the
existence of k pairwise-disjoint proper colourings of G using colours from these lists. We refer
to this as a list-packing and we define the list-packing number x;(G) as the smallest k for which
every list-assignment of G admits a list-packing. We prove several results that (asymptotically)
match the best-known bounds for the list chromatic number, among which: x;(G) < n with
equality if and only if G is the complete graph on n vertices, x7(G) < (1 + o(1))logy(n) if G is
bipartite on n vertices, and x}(G) < (1+0(1))A/log(A) if G is bipartite with maximum degree
A. We conjecture that the last statement also holds for triangle-free graphs. Our main open
question is whether x}(G) can be bounded by a constant times the list chromatic number.

1 Introduction

We are interested in a strengthening of list-colouring [8], where we seek to find not just one list-
colouring, but many disjoint list-colourings that moreover induce a partition of each list. We ask
how large the lists need to be to guarantee such a partition. It was Alon, Fellows and Hare [4]
who first hinted at this direction, right at the end of their paper, but ours [7] is the first work to
embrace this suggestion.

Given a graph G, a list-assignment L of G is a mapping L : V(G) — N that assigns a list
L(v) of available colours to each vertex v € V(G). Given a positive integer k, a k-list-assignment
is a list-assignment for which each list has cardinality k. A proper L-colouring is a colouring
¢ : V(G) — N such that every v € V(G) receives a colour ¢(v) from its list L(v), and adja-
cent vertices receive distinct colours. The list chromatic number x;(G) is the least k such that
G admits a proper L-colouring for every k-list-assignment L of G. By definition, x(G) < x¢(G)
for every graph G. On the other hand, x;(G) cannot be upper bounded by a function of x(G) alone.

We formulate the question above concretely within the framework of list-colouring. Given a
list-assignment L of G, an L-packing of G of size k is a collection of k mutually disjoint L-colourings
c1,...,c of G, that is, ¢;(v) # ¢;(v) for any ¢ # j and any v € V(G). We say that an L-packing is
proper if each of the disjoint L-colourings is proper. We define the list (chromatic) packing number
X7 (G) of G as the least k such that G admits a proper L-packing of size k for any k-list-assignment
L of G. Note that x}(G) is necessarily at least x¢(G).

Once the lists of a graph are of size much larger than x,(G), it is clear that there also must exist
many disjoint list-colourings: just iteratively extract list-colourings until the lists have size less than
Xx¢(G). However, this greedy procedure leaves small remainder lists from which one may not be



able to extract any further list-colouring, thus preventing the formation of a partition. Therefore
the reader may not find it obvious that xj is actually well-defined (i.e. finite) for every graph. It
turns out that it is. This follows for instance from our following result, which is immediate in the
context of list-colouring, but much less so for list-packing.

Theorem 1. x[(G) < n for any graph G on n vertices. Equality holds if and only if G is K, the
complete graph on n vertices.

A natural potential strengthening of Theorem 1 remains wide open: in our full paper [7], we
also study correspondence colouring, which in turn is a well-studied generalization of list-colouring
that allows for forbidding custom pairs of colours along each pair of adjacent vertices. Seeking a
partition into correspondence colourings analogously leads to the definition of the correspondence
packing number x5 (G) of a graph G. One always has x;(G) < x5(G). An elegant conjecture going
back to constructions of Catlin (see [11]), originally formulated in terms of disjoint independent
transversals in sparse n-partite graphs, can be reformulated as: x:(G) < 2[5 ] for every n-vertex
graph G. It is sufficient to prove this for K. However, the best known upper bound is 1.78n, for
n large enough, due to Yuster [11].

Usually, one considers the easy bound x¢(G) < n as a corollary of a more refined statement
about greedy colouring. A graph is d-degenerate if there is an ordering of its vertices such that
each vertex has at most d neighbours preceding it in the order. By colouring the vertices greedily
along this order, it is easy to see that x¢(G) < d + 1 for every d-degenerate graph G. Leveraging
Hall’s theorem and iterative constructions, we demonstrate that this bound only partially survives
in the packing context.

Theorem 2. For any d-degenerate graph G,
X1 (G) < xa(G) < 2d.

Conversely, for every integer d > 2, there exists a d-degenerate graph G with x5(G) = 2d and
X;(G) > d+2.

While this completely settles the behaviour of x%(G) with respect to degeneracy, we still do
not know the right answer for x7(G). Turning to the maximum degree A(G) of G, in a follow-up
paper (work in progress), we explore the possibility that x5(G) < 2 [%
A(G) < 4. In a slightly different direction (in the current paper) we obtain:

Theorem 3. x;(G) <1+ A(G) + x¢(G) and x:(G) <1+ A(G) + xc(G), for any graph G.

—‘ and we prove this for

Another important way to bound list chromatic number is to estimate it in terms of the chro-
matic number. For bipartite graphs G on n vertices, Erdds, Rubin and Taylor [8] already showed
that x¢(G) < logy(n) + 1, and this is optimal up to a factor 1+ o(1) as n — oo. More generally, by
a result of Alon [1], x¢(G) is within a factor logn of x(G) for every graph G on n vertices. Through
an analysis of random binary matrices, we show that asymptotically these bounds also hold in the
list-packing setting.

Theorem 4. For graphs G on n vertices we have, as n — 0o,
(14 o0(1))logyn if G bipartite,
Xi(G) <9 (1 +01)xs(G)logn if xf(G) uniformly bounded as n — oo,

(5+0(1))xr(G)logn in general.



Here we present a further strengthening in terms of the fractional chromatic number xf(G)
of G, which is the linear program relaxation of the chromatic number and as such a lower bound
on x(G). In the case that x(G) is bounded, Theorem 4 is asymptotically sharp for the complete
multipartite graphs (see [8]). For each graph G, one can write x (G) = ¢ for some integers a, b. Our
proof proceeds by considering many independent random [a]-colourings of the union of the lists,
which we use (via some optimal fractional colouring of G) to associate a random binary matrix
with each vertex, in such a way that there is a list-packing if none of these matrices has permanent

0. We then find good estimates for the probability that a random binary matrix has permanent 0:

Theorem 5. Let 0 < p < 1 be a real number. Let A be a random k X k-matriz with negatively
correlated Bernoulli(1 — p) distributed entries. Then

Permanent(A) = 0 with probability 2kp®(1 4 o(1)) as k — oco.

Returning to list-colouring bipartite graphs, Alon and Krivelevich [5] conjectured something
more refined in terms of maximum degree, in particular, that for some C' > 0 we have x/(G) <
C'log A(G) for any bipartite G. Since its formulation there has been surprisingly little progress on
this essential problem. Already then, it was known that for some C > 0 x4(G) < CA/log A(G) for
any bipartite G, a statement which is a corollary of the seminal result of Johansson for triangle-free
graphs [9]. Recent related efforts have only affected the asymptotic leading constant C, bringing
it down to 1; see [10, 3]. Our work matches these recent efforts, but for a much stronger structural
parameter.

Theorem 6. x;(G) < (1+0(1))A/log A for any bipartite graph G with A(G) < A, as A — oo.
Theorem 7. x5(G) < (14 0(1))A/log A for any bipartite graph G with A(G) < A, as A — oo.

In stark contrast to Theorem 6, our Theorem 7 is best possible up to a factor two, due to
an elegant probabilistic lower bound for x.(G) by Bernshteyn [6]. We conjecture that Theorem 7
also holds for triangle-free graphs, thus generalizing Johanssons result. However, despite recent
relatively short proofs of the latter, none of them seem to be easily adaptable to list-packing. For
instance, these proofs often rely on a ‘finishing blow’, where a random partial list-colouring can be
completed greedily by drawing colours from suitably structured smaller lists. In the list-packing
setting this does not seem enough, as we require access to the full lists to construct a partition.
Already a bound strictly smaller than A would be welcome progress.

Even for bipartite graphs, our proof of Theorem 7 is rather involved. We draw on the ‘coupon
collector intuition’, which we know can be combined with the Lovéasz local lemma to obtain the
analogous bound on x.(G) (see [3]). Unfortunately, this approach does not immediately work
for Theorem 7 as the requisite negative correlation property becomes false in the packing setting;
however, we managed to circumvent this obstacle via a suitable result on transversals in a large
sum of independent uniformly random permutation matrices, using significant further probability
estimates.

2 Concluding remarks

We have set the stage for a natural fusion between two classic notions in (extremal) graph theory:
packing and colouring. Our programme would see significant progress if one could prove the
following list-packing conjecture:



Conjecture 1. There exists C > 0 such that x;(G) < C - x¢(G) for any graph G.

It could even be the case that, for each ¢ > 0 there is some xo such that x7(G) < (14 ¢€) - x¢(G)
for all G with x/(G) > xo. A resolution of Conjecture 1, either affirmatively or negatively, would
be very interesting. Together with the result proved by Alon [2] that for some constant C' > 0,
x¢(G) > Clogd for all graphs G that are d-degenerate but not (d — 1)-degenerate, note that
Theorem 2 implies that xj(G) is bounded by an exponential function of x,(G), which serves as
modest support for Conjecture 1. Regardless of its status in general, Conjecture 1 may be specialised
to various fundamental graph classes to push for further progress, e.g.:

e Planar graphs. We do not yet have any constructions to rule out the possibility that x;(G) <5
for all planar G. Theorem 2 implies that it is at most 10. What is the optimal value?

e Line graphs. Based on the List Colouring Conjecture, we surmise for every ¢ > 0 that
X7 (G) < (14 €)w for every line graph G' with clique number w > wp. Due to its connection to
Latin squares, here even the case where G is the line graph of the complete bipartite graph
K, ., is enticing to narrow in on.

e Random graphs. Does it hold that xj (G 1/2) < (1 +0o(1))n/(2logyn) a.a.s.?

Finally, we reiterate the open problems of determining the right bound for x7(G) for d-degenerate
graphs G (see Theorem 2), and extending Theorem 7 from bipartite to triangle-free graphs.
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